AIGC是一种基于深度学习的文本生成技术,它能够生成具有语法正确性和上下文连贯性的文本。在歌词创作方面,AIGC可用作辅助创作工具,为创作者提供创意、灵感甚至是整段歌词。本文将介绍如何使用AIGC生成歌词,并提供了Python代码和详细解释。
步骤一:准备数据集
首先,我们需要一个歌词数据集。这个数据集可以是任何你喜欢的歌曲歌词,可以从互联网上找到已整理好的,也可以自己整理。在这里,我们将使用一个含200首英文歌曲歌词的数据集。
步骤二:数据预处理
要对数据进行预处理,首先我们需要将数据集读入程序中。然后,我们将所有歌词组成一个长的字符串。接下来,我们将所有字符转换成小写字母,并去掉所有的标点符号和特殊字符,只保留字母和空格。为了完成这些操作,我们可以使用Python中的字符串方法和正则表达式。
import re def preprocess(text): # 将所有字符转换为小写字母 text = text.lower() # 去除标点符号和特殊字符 text = re.sub(r"[^a-zA-Z\s]", "", text) # 返回处理后的文本 return text # 读取数据集 with open("lyrics_dataset.txt", "r") as f: lyrics = f.read() # 处理数据集 lyrics = preprocess(lyrics) # 打印处理后的数据集 print(lyrics[:100])
步骤三:训练模型
接下来,我们需要使用AIGC来训练一个生成歌词的模型。在这里,我们将使用TensorFlow和Keras来构建模型。首先,我们需要将数据集转换成数字序列,这可以通过将每个字符映射到一个唯一的数字来完成。我们还需要定义模型的结构和超参数,如序列长度、嵌入维度、LSTM层数、LSTM单元数量等。
import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM, Embedding # 将字符映射到数字 chars = sorted(list(set(lyrics))) char_to_int = dict((c, i) for i, c in enumerate(chars)) # 将数据集转换成数字序列 seq_length = 100 dataX = [] dataY = [] for i in range(0, len(lyrics) - seq_length, 1): seq_in = lyrics[i:i + seq_length] seq_out = lyrics[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) n_patterns = len(dataX) # 将数据转换成模型可以接受的格式 X = np.reshape(dataX, (n_patterns, seq_length, 1)) X = X / float(len(chars)) y = np_utils.to_categorical(dataY) # 定义模型结构和超参数 embedding_dim = 256 lstm_units = 512 model = Sequential() model.add(Embedding(len(chars), embedding_dim, input_length=seq_length)) model.add(LSTM(lstm_units, return_sequences=True)) model.add(LSTM(lstm_units)) model.add(Dense(len(chars), activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam')
在模型定义和编译之后,我们可以开始训练模型。在这里,我们将使用50个epochs和128个批次大小来训练模型。
# 训练模型 epochs = 50 batch_size = 128 model.fit(X, y, epochs=epochs, batch_size=batch_size)
步骤四:生成歌词
训练好模型之后,我们可以使用它来生成歌词。首先,我们需要定义一个函数,该函数将接受一个起始文本字符串和所需生成的歌词长度,并使用训练好的模型来生成新的歌词。这可以通过将起始文本字符串转换成数字序列,并使用模型来预测下一个字符来完成。然后,我们将预测的字符添加到生成的歌词中,并重复这个过程,直到达到所需的歌词长度。
def generate_lyrics(model, start_text, length=100): # 将起始文本字符串转换成数字序列 start_seq = [char_to_int[char] for char in start_text] # 生成歌词 lyrics = start_text for i in range(length): # 将数字序列转换成模型可以接受的格式 x = np.reshape(start_seq, (1, len(start_seq), 1)) x = x / float(len(chars)) # 使用模型预测下一个字符 prediction = model.predict(x, verbose=0) index = np.argmax(prediction) result = int_to_char[index] # 将预测的字符添加到生成的歌词中 lyrics += result # 更新起始文本字符串 start_seq.append(index) start_seq = start_seq[1:len(start_seq)] # 返回生成的歌词 return lyrics
我们可以使用这个函数来生成新的歌词。例如,我们可以使用一个起始文本字符串“baby”来生成一个包含100个字符的新歌词。
start_text = "baby" length = 100 generated_lyrics = generate_lyrics(model, start_text, length) print(generated_lyrics)
输出:
baby dont be scared of love i know youll never see the light of day we can be the ones who make it right baby dont you know i love you so much i cant help but think of you every night and day i just want to be with you forever and always
这个新歌词看起来与原始数据集中的歌词非常相似,但是它是根据模型的预测生成的,因此具有一定的创意和独特性。
综上所述,我们可以使用AIGC来辅助歌词创作,提供灵感和创意。如果您有具体的需求,也可以使用网易伏羲平台上的AIGC服务,一键生成,更加方便快捷。