深度学习必须掌握的13种概率分布

一. 概率分布概述

深度学习必须掌握的13种概率分布

二. 分布概率与特征

1.均匀分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/uniform.py

均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。

深度学习必须掌握的13种概率分布

2.伯努利分布(离散)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/bernoulli.py

3.二项分布(离散)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/binomial.py  

深度学习必须掌握的13种概率分布

4.多伯努利分布,分类分布(离散)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/categorical.py

深度学习必须掌握的13种概率分布

5.多项式分布(离散)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/multinomial.py

多项式分布与分类分布的关系与伯努尔分布与二项分布的关系相同。

深度学习必须掌握的13种概率分布

6.β分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/beta.py

深度学习必须掌握的13种概率分布

7.Dirichlet 分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/dirichlet.py  

深度学习必须掌握的13种概率分布

8.伽马分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/gamma.py

深度学习必须掌握的13种概率分布

9.指数分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/exponential.py

指数分布是 α 为 1 时 γ 分布的特例。

深度学习必须掌握的13种概率分布

10.高斯分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/gaussian.py

高斯分布是一种非常常见的连续概率分布。

深度学习必须掌握的13种概率分布

11.正态分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/normal.py

正态分布为标准高斯分布,平均值为 0,标准差为 1。

深度学习必须掌握的13种概率分布

12.卡方分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/chi-squared.py

深度学习必须掌握的13种概率分布

13.t 分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/student-t.py

t 分布是对称的钟形分布,与正态分布类似,但尾部较重,这意味着它更容易产生远低于平均值的值。

深度学习必须掌握的13种概率分布

via:https://github.com/graykode/distribution-is-all-you-needa